Puzzle 43 / Fillomino [Nonrectangular + Walls]

I’m extremely satisfied — a little incredulous, in fact — with how this puzzle came out. chaotic_iak labels it the “most ridiculous fillomino ever in history”. Apparently, it’s rather tricky.

ETA: Journalistic responsibility compels me to mention that chaotic_iak also added, “might be beaten later”. Oops?

This is a Fillomino combining the Nonrectangular (polyominoes can’t be rectangles) and Walls (polyominoes can’t span thick lines) variant rules. I think the first variant first came from mathgrant; I’m not as sure about the second, but they both appeared in Fillomino-Fillia 2, at least.

Write a number in every empty cell so that every group of cells with the same number that is connected through its edges is a shape that’s not a rectangle with that number of cells. In addition, cells separated by a thick border may not contain the same number.

Puzzle 43 [Nonrectangular + Walls]